Entecavir Interacts with Influx Transporters hOAT1, hCNT2, hCNT3, but Not with hOCT2: The Potential for Renal Transporter-Mediated Cytotoxicity and Drug–Drug Interactions
نویسندگان
چکیده
Entecavir (ETV) is one of the most potent agents for the treatment of the hepatitis B viral infection. The drug is principally eliminated by the kidney. The goal of this study was to investigate the potential of ETV to interact in vitro with the renal SLC transporters hOAT1, hOCT2, hCNT2 and hCNT3. Potential drug-drug interactions of ETV at the renal transporters with antiviral drugs known to be excreted by the kidney (adefovir, tenofovir, cidofovir) as well as transporter-dependent cytotoxicity were also examined. Interactions with the selected transporters along with cytotoxicity were studied in several transiently transfected cellular models using specific substrates and inhibitors. ETV was found to be both a substrate and inhibitor of hOAT1 (IC50 = 175.3 μM), hCNT2 (IC50 = 241.9 μM) and hCNT3 (IC50 = 278.4 μM) transporters, although it interacted with the transporters with relatively low affinities. ETV inhibited the cellular uptake of adefovir, tenofovir, and cidofovir by hOAT1; however, effective inhibition was shown at ETV concentrations exceeding therapeutic levels. In comparison with adefovir, tenofovir, and cidofovir, ETV displayed no transporter-mediated cytotoxicity in cells transfected with hOAT1, hCNT2, and hCNT3. No significant interaction of ETV with hOCT2 was detected. The study demonstrates interactions of ETV with several human renal transporters. For the first time, an interaction of ETV with the hCNTs was proved. We show that the potency of ETV to cause nephrotoxicity and/or clinically significant drug-drug interactions related to the tested transporters is considerably lower than that of adefovir, tenofovir, and cidofovir.
منابع مشابه
Renal handling of amphotericin B and amphotericin B-deoxycholate and potential renal drug-drug interactions with selected antivirals.
Amphotericin B (AmB) is excreted via the renal excretion route. This excretion process may result in nephrotoxicity. However, relevant information on the precise renal excretion mechanisms is not available. The aim of the study was to analyze the possible interaction of AmB or its prodrug AmB deoxycholate (AmB-DOC) with the typical renal organic anion transporters (OATs) and organic cation tran...
متن کاملGene expression levels and immunolocalization of organic ion transporters in the human kidney.
Renal excretion of organic anions and cations is mediated by the organic ion transporter family (SLC22A). In this study, the mRNA levels of the organic ion transporters were quantified by real-time PCR in normal parts of renal tissues from seven nephrectomized patients with renal cell carcinoma, and the distributions and localization of human (h)OAT1, hOAT3, and hOCT2 proteins were investigated...
متن کاملHuman organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins.
Prostaglandin E(2) (PGE(2)) and prostaglandin F(2 alpha) (PGF(2 alpha)) have been used for the induction of labor and the termination of pregnancy. Renal excretion is shown to be an important pathway for the elimination of PGE(2) and PGF(2 alpha). The purpose of this study was to elucidate the molecular mechanism of renal PGE(2) and PGF(2 alpha) transport using cells stably expressing human org...
متن کاملHuman organic anion transporters and human organic cation transporters mediate renal antiviral transport.
Renal excretion is an important elimination pathway for antiviral agents, such as acyclovir (ACV), ganciclovir (GCV), and zidovudine (AZT). The purpose of this study was to elucidate the molecular mechanisms of renal ACV, GCV, and AZT transport using cells stably expressing human organic anion transporter 1 (hOAT1), hOAT2, hOAT3, and hOAT4, and human organic cation transporter 1 (hOCT1) and hOC...
متن کاملImpact of Substrate-Dependent Inhibition on Renal Organic Cation Transporters hOCT2 and hMATE1/2-K-Mediated Drug Transport and Intracellular Accumulation.
Renal transporter-mediated drug-drug interactions (DDIs) are of significant clinical concern, as they can adversely impact drug disposition, efficacy, and toxicity. Emerging evidence suggests that human renal organic cation transporter 2 (hOCT2) and multidrug and toxin extrusion proteins 1 and 2-K (hMATE1/2-K) exhibit substrate-dependent inhibition, but their impact on renal drug secretion and ...
متن کامل